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Abstract. In this paper, we study the dynamics of the diphtheria out-
break among the immunocompromised group of people, the Rohingya

ethnic group. Approximately 800,000 Rohingya refugees are living in
the Balukhali refugee camp in Cox’s Bazar. The camp is densely popu-

lated with the scarcity of proper food, healthcare, and sanitation. Subse-

quently, in November 2017 a diphtheria epidemic occurred in this camp.
To keep up with the pace of the disease spread, medical demands, and

disaster planning, we set out to predict diphtheria outbreaks among

Bangladeshi Rohingya immigrants. We adopted a modified Susceptible-
Latent-Infectious-Recovered (SLIR) transmission model to forecast the

possible implications of the diphtheria outbreak in the Rohingya camps

of Bangladesh. We discussed two distinct situations: the daily confirmed
cases and cumulative data with unique consequences of diphtheria. Data

for statistical and numerical simulations were obtained from [1]. We used

the fourth-order Runge-Kutta method to obtain numerical simulations
for varying parameters of the model which would demonstrate conclu-

sive estimates. Daily and cumulative data predictions were explored for
alternative values of the parameters, i.e., disease transmission rate (β)

and recovery rate (γ). Additionally, the average basic reproduction num-

ber for the parameters β and γ was calculated and displayed graphically.
Our analysis demonstrated that the diphtheria outbreak would be under

control if the maintenance could perform properly. The results of this

research can be utilized by the Bangladeshi government and other hu-
manitarian organizations to forecast disease outbreaks. Furthermore, it

might help them to make detailed and practical planning to avoid the

worst scenario.
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1. Introduction

SIR model is a fundamental infectious disease transmission model, intro-
duced in the early 20th Century [2, 3]. Infectious diseases caused by microor-
ganisms such as bacteria, viruses, and parasites, spread through various forms
of physical contact, including sneezing, coughing, or breathing; feces, blood,
and other bio-fluids are also common sources of transmission [3,4]. Despite the
significant growth of modern medical technologies, we are not immunized to
these life-threatening microscopic organisms. The Covid-19 pandemic opened
our eyes and showed the world how vulnerable we are [5, 6]. Some well-
known epidemics from primitive times are the Plague of Athens (430-438 B.C.),
Circa(3000 B.C.), Plague of Justinian(541-542), Black Death (14th Century),
and Spanish Flu (20th Century). The realistic nature of epidemiology has at-
tracted numerous researchers in this field of mathematical biology. Real-time
modeling can make it possible to find vital information about the potentiality
of an epidemic [7], like collecting required resources and underlying mechanisms
of disease transmission to make decisions for the future [8, 9].

Diphtheria is a contagious respiratory disease spread by a strain of bacteria
known as Cyanobacteria, generally through air droplets, and its transmission
can be prevented by employing widespread vaccination measures. Tracing and
identifying infected individuals with Diphtheria symptoms may help reduce
transmission. Some common symptoms are fever, fatigue, scratchy throat, and
swollen glands. Fatal damage might occur in vital organs like the kidney, and
heart leading to breathing issues, cardiac arrest, and even death [1]. Vaccina-
tion measures have led to the eradication of diphtheria in developed nations;
hence there is a limitation of epidemiological data [1, 10–12]. Despite these
immunization measures, Thailand has reported multiple diphtheria flare-ups
in the past few decades, including the 2012 outbreak [13].

Refugee camps often suffer from outbreaks of infectious diseases such as
cholera, hepatitis, and diphtheria as a consequence of inadequate hygiene and
poor living standards. Following the collapse of the former soviet union in
1990, an outbreak of diphtheria occurred, and the epidemic curve peaked dur-
ing the mid-nineties with almost a million reported cases [14]. Moreover, in
some conflict settings in Yemen and Venezuela, there are reported diphtheria
outbreaks [1, 15].

A massive diphtheria outbreak occurred in the overcrowded refugee camp of
Southern Bangladesh in November of 2017. By the end of 2019, the number of
cases mounted up to a total of 7064 with just 4% confirmed through diagno-
sis [16]. In the last couple of decades, the Rohingya people have been victims
of a forced exodus and have been living as refugees in Bangladesh. In Au-
gust 2017, about 625000 Rohingyas fled Myanmar and moved into the largest
refugee settlement in Bangladesh [8,17]. Due to lifelong undernourishment and
the absence of healthcare, the camp has often faced outbreaks of various conta-
gious diseases like diarrhea, malaria, dengue, measles, and chikungunya [15,18].
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Moreover, the descent of the COVID-19 pandemic has not been kind to this
distressed community [19]. The impact of SARS-CoV-2 infection in the Ro-
hingya Refugee camp has been explored by [20]. The main objective of this
article is,

• To investigate the dynamics of the diphtheria outbreak in the Rohingya
camp in Bangladesh using the Susceptible-Latent-Infectious-Recovered
(SLIR) epidemic model.

The main novelty and findings of this study are as follows:

• This study analyzes a modified Susceptible-Latent-Infectious-Recovered
(SLIR) ODE model along with the non-negativity and boundedness of
solutions.
• We have formulated the disease-free equilibrium points and basic re-

production numbers corresponding to the required system of first-order
ordinary differential equations (ODEs) following various parameters.
• Numerical illustrations have been performed to observe the effects of

disease transmission rate and recovery rate on the dynamics of the
disease outbreak.
• The strategy for controlling the diphtheria outbreak is suggested.

This work investigates the diphtheria epidemiological data set from the Ro-
hingya refugee camp. The article’s structure is as follows: Section 2 details the
SLIR mathematical model. A similar compartmental model on the COVID-
19 pandemic considered a non-linear incidence rate [21]. Non-negativity and
boundedness of solutions are presented in sub-Section 2.1. Section 3 covers the
suggested model’s equilibrium point. A brief calculation to determine the basic
reproduction number has been depicted in Section 4. Results and discussions
are found in Section 5. We have also conveyed numerical methods and pa-
rameter estimation for the system in sub-Section 5.1. Furthermore, numerical
illustrations with suitable pictorial representation are outlined in sub-Section
5.2. Finally, Section 6 shows the conclusion of the results.

2. Mathematical Model

In this paper, we propose the following SLIR (Susceptible-Latent-Infectious-
Recovered) epidemic model to explore the dynamics of diphtheria spread in the
Rohingya settlement [24,25],

dS
dt

= Λ− βS(t)I(t)− µS(t),
dL
dt

= lβS(t)I(t)− (µ+ δ)L(t),
dI
dt

= (1− l)βS(t)I(t) + δL(t)− (µ+ γ + α)I(t),
dR
dt

= γI(t)− µR(t),

(1)

for t ∈ (0,∞) the non-negative initial conditions are,

S(0) = S0, L(0) = L0, I(0) = I0, and R(0) = R0.(2)
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The diagram depicting the transition of this compartmental model (1) is shown
in Figure 1.

Susceptible

Latent

Infected

Recovered

µ
β

µ

δ

µ α

lβ

γ

µ

Figure 1. Schematic diagram of transmission dynamics of
SLIR model.

It should be noted that,

N(t) ≡ S(t) + L(t) + I(t) +R(t),

dN

dt
≡ dS

dt
+
dL

dt
+
dI

dt
+
dR

dt
.

Here, N(t) is the total number of individuals which is subdivided into four
compartments S,L, I, and R which represent the number of populations in the
susceptible, latent, infected, and recovered class, respectively. Hence, for the

system (1), dN
dt

= Λ−µN(t)−αI(t). The parameter Λ is the recruitment rate

of the susceptible class, it is defined as S0
µ , where µ is the natural mortality rate.

Moreover, α signifies the disease-induced death rate. The infection transmission
rate is denoted by β. δ stands for the detection rate of the latent population,
and l restricts the infection for the L class. Following this, the detection rate δ
regulates the transition from the L class to the I class.

2.1. Non-negativity and boundedness of solutions. Let us define

K =
Λ

µ
.
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Now it is possible to define the model (1) in compact form with some initial
set of data,

U′ = F (U, t), U(0) = Uo.(3)

where U = (U1, U2, U3, U4) = (S,L, I,R). Now the system (3) maintains exis-
tence and uniqueness theory for differential equations, considering the function
F is C1 and locally Lipschitz in U. Now, in order to prove positivity and
boundedness for the interval (0, T ), where T and U(t) are finite, we show the
set Φ is invariant under the system flow,

Φ = {U ∈ R4 : Ui ≥ 0,

4∑
i=1

Ui < K}.

and the set Φ is positively invariant under the flow U(t) for t ∈ (0, T ) and
therefore T =∞, implying that the solution exists globally in time.

Theorem 2.1. The closed region Φ = {U ∈ R4 : Ui ≥ 0,
∑4

i=1 Ui < K} is
positive and bounded for the system (1) [20].

Proof. The boundary component Π for i = 1, 5, are denoted by,

Πi = {U ∈ Φ : Ui = 0, i = 1, 4},

Π5 = {U ∈ Φ :

5∑
i=1

Ui = K},

where, ∂Φ = ∪5i=1Πi. Furthermore, the inward normal ni, defined for the
boundary segments Πi, i = 1, 4, ni = ηi = (0, 0, 1, 0, 0) where the i-component
is nonzero, and n5 = (−1,−1,−1,−1,−1). Here, n is the positive linear com-
bination of the inward normal of the boundary segments. Our proof will be
done if, n ·U(t) ≥ 0. Now, for i = 1, 4 and

∑5
i=1 Ui = K,

η1 ·U′ = Λ ≥ 0, for U ∈ Π1,

η2 ·U′ = lβU1U3 ≥ 0, for U ∈ Π2,

η3 ·U′ = δU2 ≥ 0, for U ∈ Π3,

η4 ·U′ = γU3 ≥ 0, for U ∈ Π4.

Considering,
∑5

i=1 Ui = K, we get,

dN

dt
= Λ− µN(t)− αI(t).

Let N = K for a constant K. On Π5, we have,

n5 ·U′ = −Λ + µK + αU3 ≥ 0.

Thus, our proof is complete, since Φ is positively invariant. It should be noted
that for chosen initial conditions U0 ∈ Φ, the solution Ut ∈ Φ exists.

�
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3. Equilibrium Point

To determine the equilibrium points of the compartment model (1), we re-
solve the system by setting each derivative equal to zero. It is assumed, at

equilibrium steady states, (S,L, I,R) ≡ (
∗
S,
∗
L,
∗
I,
∗
R). We have,

Λ− β
∗
S
∗
I − µ

∗
S = 0,

lβ
∗
S
∗
I − (µ+ δ)

∗
L = 0,

(1− l)β
∗
S
∗
I + δ

∗
L− (µ+ γ + α)

∗
I = 0,

γ
∗
I − µ

∗
R = 0.

(4)

3.1. Disease-free Equilibrium Point (DFE). For finding DFE point, we

substitute the variables by the following manner, (
∗
S,
∗
L,
∗
I,
∗
R) ≡ (S0, L0, I0, R0).

Thus, we move, 
Λ− βS0I0 − µS0 = 0,

lβS0I0 − (µ+ δ)L0 = 0,

(1− l)βS0I0 + δL0 − (µ+ γ + α)I0 = 0,

γI0 − µR0 = 0.

(5)

After finishing easy calculation, we finally get our desired DFE point as (S0, L0, I0, R0) =

(Λ
µ , 0, 0, 0).

4. Basic Reproduction of the Model

In epidemiology, the basic reproduction number is sometimes called the basic
reproductive ratio or incorrectly basic reproductive rate. It is denoted by R0.
By observing the work of Alfred Lotka, Ronald Ross, and others, it is possible
to understand the root concept of the basic reproduction ratio. At first, George
MacDonald applied this basic reproduction number in modern epidemiology in
1952. The basic reproductive number helps to predict the disease outbreak of
a disease.
The basic reproduction number is a crucial threshold analysis of infectious
disease modeling. It is useful to determine whether or not an infectious disease
can accelerate through a population [26].

An epidemic will exist in the population only if an infected individual ap-
pears in it. The basic reproduction number or threshold parameter R0 is par-
ticularly important when analyzing the transmission dynamics of any illness,
because if,

(1) R0 < 1, there will be no epidemic or disease will die out.
(2) R0 > 1, the epidemic will occur or disease will persist.
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4.1. Calculation of R0. There are several ways to calculate basic reproduc-
tion numbers. Among them, the next-generation approach is a flourishing
technique that is easy to design. For the next-generation approach in the SLIR
model, suppose,

F =

 lβSI
(1− l)βSI

0

 and V =

 (µ+ δ)L
(µ+ γ + α)I − δL

µR− γI

 ,

where F incorporates the rate of appearance of a new infection, and V shows
the remaining intermediate terms, like mortality rate, deaths, recovery, and
others. Then, determine the matrices F and V ,

F =

0 lβS 0
0 (1− l)βS 0
0 0 0

 and V =

µ+ δ 0 0
−δ µ+ γ + α 0
0 −γ µ

 .

Therefore, the inverse matrix of V , and the next-generation matrix FV −1 be-
comes,

V −1 =



1
δ + µ)

0 0

δ
(α+ γ + µ)(δ + µ)

1
α+ γ + µ 0

γδ
µ(α+ γ + µ)(δ + µ)

γ
µ(α+ γ + µ)

1
µ

 ,

FV −1 =


lβSδ

(α+ γ + µ)(δ + µ)
lβS

(α+ γ + µ)
0

(1− l)βSδ
(α+ γ + µ)(δ + µ)

(1− l)βS
(α+ γ + µ)

0

0 0 0

 .

Thus, spectral radius, σ(FV −1) =
Λ(lβδ − (−1 + l)β(δ + µ))

µ(α+ γ + µ)(δ + µ)
=

Λβ(δ + µ− lµ)

µ(α+ γ + µ)(δ + µ)
.

In the next generation approach, this spectral radius is the basic reproduction
number R0. Hence,

R0 =
Λβ(δ + µ− lµ)

µ(α+ γ + µ)(δ + µ)
.(6)

For DFE point, we set I = 0. On the other hand, for endemic equilibrium
(EE) point I 6= 0.
To calculate the infective singularity or endemic equilibrium state of the system
(1), we consider,

dS

dt
=
dL

dt
=
dI

dt
=
dR

dt
= 0.
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We obtain the endemic equilibrium point by solving the aforementioned system.
After some simplification, we get the EE point,

E = (S1, L1, I1, R1).

where

S1 =
(δ + µ)(γ + δ + µ)

β(δ + µ− lµ)
, L1 =

lΛ

δ + µ
− lΛ(γ + δ + µ)

β(δ + µ− lµ)
,

I1 =
µ

β
(R0 − 1), R1 = −γ

β
+

γΛ(δ + µ− lµ)

µ(δ + µ)(γ + δ + µ)
.

The formulations of the I1 make it clear that the EE point will only exist
when R0 > 1. Furthermore, the Jacobian matrix of the model (1) at EE point
(S1, L1, I1, R1) is calculated by,

J(S1, L1, I1, R1) =



−µ− lβΛ
δ + µ

+
lµ(γ + δ + µ)
δ + µ− lµ 0 − (δ + µ)(γ + δ + µ)

δ + µ− lµ 0

l2
(

βΛ

δ + µ
− µ(γ + δ + µ)

δ + µ− lµ

)
−δ − µ l(δ + µ)(γ + δ + µ)

δ + µ− lµ 0

(l − 1)β

(
− lΛ
δ + µ

+
lµ(γδ + µ)
δ + µ− lµ

)
δ − lδ(γ + δ + µ)

δ + µ− lµ 0

0 0 γ −µ


.

The determinant of this matrix is,

Det(J) = − lµ(γ + δ + µ)(µ(δ + µ)(γ + δ + µ)− βΛ(δ + µ− lµ))

δ + µ− lµ
< 0.

which satisfies the Li and Muldowney theorem of stability [22].
One of the roots of the characteristic equation Det(J−λI) = 0 is λ1 = −µ, and
the remaining three roots can be determined by using the following quadratic
equation,

(7) λ3 +Q1λ
2 +Q2λ+Q3 = 0.

where

Q1 = −(P1+P6+P7), Q2 = P1P7+P1P6+P6P7−P2P5−P4δ,Q3 = P2P5P7+P1P4δ−P1P6P7−P2P3δ,

and P1 = −µ − lβΛ
δ + µ

+
lµ(γ + δ + µ)
δ + µ− lµ , P2 = − (δ + µ)(γ + δ + µ)

δ + µ− lµ , P3 =

l2
(

βΛ

δ + µ
− µ(γ + δ + µ)

δ + µ− lµ

)
, P4 =

l(δ + µ)(γ + δ + µ)
δ + µ− lµ , P5 = (l−1)β

(
− lΛ
δ + µ

+
lµ(γδ + µ)
δ + µ− lµ

)
,

P6 = − lδ(γ + δ + µ)
δ + µ− lµ , P7 = −δ − µ.

All the roots of the characteristic equation Det(J−λI) = 0 will have the negative
real part for R0 > 1 which satisfy the necessary condition of the Routh–Hurwitz
criterion [23]. Thus, the EE point is locally asymptotically stable.
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5. Results and Discussion

5.1. Numerical Method and Parameter Estimation. The concerned model
(1) is a first-order ordinary differential equation (ODE) with initial conditions.
To find the numerical solution of first order ODE, the most renowned numeri-
cal methods are the Euler method, Adams-Moulton method, backward differ-
entiation method (BDF), linear multistep method, or Runge–Kutta method,
and Finite difference method (FDM) [24, 25]. In this article, the fourth-order
Runge–Kutta method (RK4) is applied to solve the model (1) because of its
higher order of accuracy and unconditional stability. More information regard-
ing fourth-order Runge-Kutta method can be found in Appendix 11. MATLAB
R2020a is used as a programming language to implement the RK4 method for
the system (1). Corresponding graphs of numerical simulation are presented
in Section 5.2. Since the model (1) is a population model and monitors the
dynamics of disease outbreaks in individuals, all the dependent variables and
parameters must be non-negative. Fitting methodology like longitudinal daily
case notification data or least-squares approach, Latin hypercube sampling can
be imposed to execute a better fit for the model considering collected data
and to estimate a set of parameters [27]. For the proposed model, the set
of parameters like γ, β, α, l, and δ is estimated using the least-squares ap-
proach. The MATLAB GlobalSearch algorithm is examined to search for the
best appropriate parameters from the Latin hypercube sampling. In Table 1,
the best-estimated values of parameters regarding the model and data are pre-
sented, and we have used them to examine numerical simulation.

Table 1. Model parameters estimation.

Parameter Value Source

Λ 60 [28]
µ 0.002 [7]
γ 0.8975 Estimated
β 0.000011625 Estimated
δ 0.01 Estimated
l 0.005 Estimated
α 0.0000025 Estimated

5.2. Numerical Illustrations. Since November 2017, diphtheria outbreaks
among the refugees have become a public health crisis with the initial index
case reported on November 10th, 2017, in the Balukhali camp. This upper
respiratory tract disease diphtheria is highly transmissible and is caused by
the bacterium Cyanobacteria diphtheria, which escalates through air and wa-
ter droplets and close physical contact. Bar diagram 2 (left) represents the
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confirmed daily diphtheria cases in the Balukhali Rohingya camp for the first
fifty days. Initially, for the first 20 days there were minimal cases of infection.
However, within the next time-span of 5 days, the numbers crossed 50, and
from day 25 to day 35, diphtheria cases increased significantly and peaked.
Eventually, the number of infected populations gradually declined.

Figure 2. Bar diagram for (a) daily confirmed cases, and (b)
cumulative data.

Figure 2 (right) portrays the total number of cases for fifty days. We see that
within fifty days the total number of infected population cross 2000. Based on
the current scenario, the assumption of the future forecast is discussed in the
following figures.

In the deterministic model (1) we consider γ as the recovery rate for the
infected population. Figures 3 and 4 show predicted results for different values
of γ.

Figure 3. Effect of the parameter γ on the population of
infected individuals per day.
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Figure 4. Effect of the parameter γ on the total number of
infected individuals.

From Figure 3, the daily infected individual may increase for a certain time-
span and it may last for ten to fifteen days. After that, the number of infected
populations will decrease gradually, and eventually, there will be no infected
population, consequently an increase in the recovery class can be noticed. High
recovery rate results in lower cases of infection. We may predict the same
outcome for the total number of infected cases from Figure 4. When the value
of γ = 0.9175 (R0 = 0.378965), the total number of infections can never
cross 5000 and after a time long its value will be constant between 4000 to
5000. Whenever γ = 0.8896 (R0 = 0.390824), the total number of infected
population will be approximately 9000. To summarize, there will be an 80%
change in infection rate as the value of γ by 3.14% is altered. Thus, the infection
can be diminished if there is a rise in the recovery rate among the population.

Figure 5. Effect of the parameter β on the population of
infected individuals per day.
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Figure 6. Effect of the parameter β on the total number of
infected individuals.

In our formulated model, β is the infection transmission rate from suscep-
tible individuals to infected populations. Figures 5 and 6 represent the future
forecast of infected individuals for different values of β. From both of the fig-
ures, it is evident that a higher transmission rate implies a higher number of
the infected population. For the value of β = 0.000011717 (R0 = 0.390457),
the solid red line presents the changes in population for both Figures 5 and 6.
From Figure 5, it is evident that for β = 0.000011717 the maximum number of
daily infected individuals may be around 180. Meanwhile, for β = 0.0000113
(R0 = 0.376561) (the solid green line), the number of daily infected populations
will not cross 80. Thus, the daily number of infected cases may change rapidly
for very small changes of β, and this prediction is also true for cumulative data
Figure 6.

Figure 7. Estimated values of basic reproduction number
with respect to β (left) and γ (right).

The basic reproduction number (R0) is significant in decision-policy in an
ongoing epidemic situation when exploring a model. Based on our postulated
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model, we have illustrated how R0 alters with different values of β and γ. Fig-
ure 7 (right) indicates that R0 drops as the value of γ increases, where γ is
the recovery rate of infected individuals. Increasing the pace of recovery across
populations can thus be a powerful method for preventing diphtheria occur-
rences in Rohingya refugee camps. Diagram 7 (left) indicates that increasing
the values of β enhances R0, where β is the transmission rate between sus-
ceptible and infected populations. As a result, in order to fend off diphtheria
epidemics, we must minimize the infection transmission rate.

6. Conclusion

This article discusses a demographic SLIR epidemic model with numerical
demonstrations. In this model, the Rohingya population is incorporated to
study the transmission and recovery rates which depend on the diphtheria out-
break of 2017. In this study, we discuss the basic reproduction number and its
impact on the disease outbreak for different values of parameters. To analyze a
model, the basic reproduction number plays a vital role in decision-making in
an ongoing outbreak situation. We have shown the changes in R0 for different
values of β and γ based on our assumed model. In diagram 7 (left), we see that
by increasing the values of β the basic reproduction number is also increasing
where β is the contact rate between susceptible population to infected indi-
viduals. Thus, to prevent diphtheria breakouts we must control the infection
transmission rate which is a dominant sensitive parameter for understanding
the transmission dynamics. On the other hand, Figure 7 (right) shows basic
reproduction number decreases as the value of γ is increased where γ is the
recovery rate of infected individuals. Thus, increasing the recovery rate among
the populations can be a strong strategy to prevent diphtheria flare-outs in
Rohingya refugee camps. The dynamical behavior of the model is discussed
concerning distinct values of transmission and recovery rate. After analyzing
the diagram, it is evident that diphtheria outbreaks can be controlled by taking
some efficient actions. In the future, such analysis can help experimental work-
ers and decision-makers to build a strong strategy to control the diphtheria
outbreak rapidly in other regions. The sleazy living conditions like insufficient
health care system, lack of proper drinking water, sanitation, and poor hygiene
condition; infectious disease outbreaks are seen in refugee camps. This kind
of ambient can increase the transmission of various infectious diseases such
as cholera, hepatitis, diphtheria, and other transmitted diseases. Hence, it is
necessary to consider climate changes and environmental variability while sup-
plying clean water, and other essentials in the camp while increasing strong
leadership internationally and sustainable investment. In this article, we do
not consider any seasonal variability. People who are interested in working on
this model can add this factor. Moreover, the model can be converted to a
stochastic system to observe the discrepancy of the dynamics.
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11. Appendix A

Runge-Kutta Method

Runge-Kutta (RK) method is one of the efficient finite difference schemes
for first order ordinary differential equations with boundary conditions. Here,
the fourth-order Runge-Kutta method is considered which is also known as
“the classic Runge-Kutta method”. Let us consider the first order initial-value
problem. {

y′ = F (x, y), a 6 x 6 b,

y(a) = y0.
(8)

The time step is given by, τi = τ0 + ih where h is the time step size. For the
ODE (8), let ω0 = a and for the next time step τi+1, the spatial component
y(τi+1) is given by

ωi+1 = ωi +
1

6
(L1 + 2L2 + 2L3 + L4),(9)

and 

L1 = h ∗ F (τi, ωi),

L2 = h ∗ F (τi +
m

2
, ωi +

L1

2
),

L3 = h ∗ F (τi +
m

2
, ωi +

L2

2
),

L4 = h ∗ F (τi +m,ωi + L3).

(10)
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Here, the method has four steps, where the former two are predictor steps and
the latter are corrector steps. The Runge-Kutta method is a well-established
method that is unconditionally stable with a total accumulated error of order
O(h4) and truncation error of order O(h5) [29].
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