Department / Institute	Department of Theoretical and Compu	
Program	MS in Theoretical and Computational Ch	
Syllabus	(2017-2018)	
Followed Admission Year	2019-2020, 2018-2019, 2017-2018	

SL	Course Type *	Course Prefix *	Course Code *
	Lecturing	TCC	501
1			

	Lecturing	TCC	502
2			

	Locturing	TCC	502
3	Lecturing	ICC	503

	Lecturing	TCC	504
4			

5	Lecturing	TCC	505

	Lecturing	TCC	506
6			

	Lecturing	TCC	507
7			

8	Lecturing	TCC	508

	Lecturing	TCC	509
9			

	Lecturing	TCC	510
10			

	Lecturing	TCC	511
11			

	Laboratory	TCC	521L
12			

	Laboratory	TCC	5221
13	Laboratory	ICC	522L

	Laboratory	TCC	523L
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
26			
27			
28			
29			
30			
31			
32			
33			
34 25			
36			
37			
38			
39			

40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		

87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
110		
117		
110		
120		
120		
121		
123		
124		
125		
126		
127		
128		
129		
130		
131		
132		
133		

134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		
168		
169		
170		
171		
172		
173		
174		
175		
176		
177		
178		
179		
180		

181		
182		
183		
184		
185		
186		
187		
188		
189		
190		
191		
192		
193		
194		
195		
196		
197		
198		
199		
200		
201		
202		
203		
204		
205		
206		
207		
208		
209		
210		
211		
212		
213		
214		
215		
210		
217		
210		
220		
221		
222		
223		
224		
225		
226		
227		

228		
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		
260		
261		
262		
263		
264		
265		
266		
267		
268		
269		
270		
271		
272		
273		
274		

275		
276		
277		
278		
279		
280		
281		
282		
283		
284		
285		
286		
287		
288		
289		
290		
291		
292		
293		
294		
295		
296		
297		
298		
299		
300		
302		
303		
304		
305		
306		
307		
308		
309		
310		
311		
312		
313		
314		
315		
316		
317		
318		
319		
320		
321		

322		
323		
324		
325		
326		
327		
328		
329		
330		
331		
332		
333		
334		
335		
336		
337		
338		
339		
340		
341		
342		
343		
344		
345		
346		
347		
348		
349		
350		
351		
352		
353		
354		
255		
350		
358		
359		
360		
361		
362		
363		
364		
365		
366		
367		
368		

369		
370		
371		
372		
373		
374		
375		
376		
377		
378		
379		
380		
381		
382		
383		
384		
385		
386		
387		
388		
389		
390		
391		
392	 	
204		
205		
306		
390		
398	 	
399	 	
400		
401		
402		
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		

417 418 419 420 421 422 423 424 425 426 427 428 430 431 432 433 434
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
419
420
421 422 423 424 425 426 427 428 430 431 432 433 434
422
423 424 425 426 427 428 429 430 431 432 433 434
424 425 426 427 428 429 430 431 432 433 434
425 426 427 428 429 430 431 432 433 434
426 427 428 429 430 431 432 433 434 435
427 428 429 430 431 432 433 434 435
428 429 430 431 432 433 434 435
429 430 430 431 431 432 433 434 435 432
430 431 431 432 432 433 433 434 435 436
431
432
433 434 435
434 435
435
10.6
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
152
454
455
456
457
458
459
460
461
462

463		
464		
465		
466		
467		
468		
469		
470		
471		
472		
473		
474		
475		
476		
477		
478		
479		
480		
481		
482		
483		
484		
485		
486	 	
407		
400		
409		
490		
491	 	
492	 	
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507		
508		
509		

510		
511		
512		
513		
514		
515		
516		
517		
518		
519		
520		
521		
522		
523		
524		
525		
526		
527		
528		
529		
530		
531		
532		
533		
534		
535		
536		
537		
538		
539		
540		
541		
542		
543		
544		
545		
547		
548		
549		
550		
551		
552		
553		
554		
555		
556		

557		
558		
559		
560		
561		
562		
563		
564		
565		
566		
567		
568		
569		
570		
571		
572		
573		
574		
575		
576		
577		
578		
579		
580		
581		
582		
583		
584		
585		
500		
507		
500		
509		
590		
592		
593		
594		
595		
596		
597		
598		
599		
600		
601		
602		
603		

604		
605		
606		
607		
608		
609		
610		
611		
612		
613		
614		
615		
616		
617		
618		
619		
620		
621		
622		
623		
624		
625		
626		
627		
628		
629		
630		
631		
632		
624		
625		
626		
637		
638		
639		
640		
641		
642		
643		
644		
645		
646		
647		
648		
649		
650		

651		
652		
653		
654		
655		
656		
657		
658		
659		
660		
661		
662		
663		
664		
665		
666		
667		
668		
669		
6/0		
6/1		
672		
673	 	
675		
676		
677		
678		
679		
680		
681		
682		
683		
684		
685		
686		
687		
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		

698		
699		
700		
701		
702		
703		
704		
705		
706		
707		
708		
709		
710		
711		
712		
713		
714		
715		
716		
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		

745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		
756		
757		
758		
759		
760		
761		
762		
763		
764		
765		
766		
/6/		
768		
769		
770		
771		
772		
774		
775		
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
786		
787		
788		
789		
790		
791		

792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		
810		
811		
812		
813		
814		
815		
816		
817		
818		
819		
820		
021		
022		
823		
824		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		

839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		
864		
865		
866		
867		
868		
869		
870		
871		
872		
873		
874		
8/5		
876		
877		
8/8		
879		
880		
881		
882		
883		
884		
885		

886		
887		
888		
889		
890		
891		
892		
893		
894		
895		
896		
897		
898		
899		
900		
901		
902		
903		
904		
905		
906		
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		
918		
919		
920		
921		
922		
923		
925		
926		
927		
928		
929		
930		
931		
932		

933		
934		
935		
936		
937		
938		
939		
940		
941		
942		
943		
944		
945		
946		
947		
948		
949		
950		
951		
952		
953		
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965	 	
900		
907		
900		
970		
971		
972		
973		
974		
975		
976		
977		
978		
979		

980		
981		
982		
983		
984		
985		
986		
987		
988		
989		
990		
991		
992		
993		
994		
995		
996		
997		
998		
999		
1000		

tional Chemistry

emistry
Computational Chemistry I	1st Year	N/A (Yearly)	3

Computational Chemistry II	1st Year	N/A (Yearly)	3

Molecular Spectroscopy	1st Year	N/A (Yearly)	3

Statistical Thermodynamics	1st Year	N/A (Yearly)	3

Molecular Modeling and Drug Design	1st Year	N/A (Yearly)	3

Computational Methods in Reaction Mechanism	1st Year	N/A (Yearly)	3

Computational Biochemistry	1st Year	N/A (Yearly)	3

Molecular Modeling of Inorganic Compounds	1st Year	N/A (Yearly)	3

Computational Chemistry of Energy Materials	1st Year	N/A (Yearly)	3

emoinformatics and Computational Chemical Biol	1st Year	N/A (Yearly)	3

Practical Computational Chemistry I	1st Year	N/A (Yeariy)	3

Practical Computational Chemistry II	1st Year	N/A (Yearly)	3

Programming and Software Development	1st Year	N/A (Yearly)	3

Total Marks *
100
Course Outline

radiation and the ultraviolet catastrophe; Planck's quantization hypothesis; Particle character of light; Photoelectric effect; Einstein explanation of Photoelectric effect; Compton effect; The vibration of atoms in crystals are quantized; The Hydrogen atom's spectrum; Angular momentum are quantized; De Broglie waves are observed experimentally; Heisenberg uncertainty principle. The one-dimensional classical wave equation; Separation of variables; Oscillatory solution to differential equation; Even function and odd functions.

2. The Schrödinger equation and a particle in a box; The Schrödinger equation; Linear operator in quantum mechanics; Hamiltonian operator; Eigenvalue problem in quantum mechanics; wave function and their probabilistic interpretations; Quantized energies; Normalized wave function; Average quantities in quantum mechanics; The uncertainty principle and operators; Schrödinger equation for a particle in a three dimensional box and its solution: interpretation of the solution and concept of degeneracy.

3. State functions; Quantum mechanical operators and classical variables; Observable quantities and eigenvalues; Commutators and the uncertainty principle; Hermitian operators; Hermitian operators and orthogonality; Mutual Eigen functions and time-dependent Schrödinger equation.

4. Classical harmonic oscillator; Conservation of energy of Classical harmonic oscillator; Harmonic oscillator model of a diatomic molecule; The harmonic oscillator approximation; The energy of a quantum-mechanical harmonic oscillator; Tunneling; Harmonic oscillator wave function; Parity of Hermite polynomials; Operator method of solution to the Schrödinger equation for a harmonic oscillator.

5. Spherical coordinates; The one-particle central force problem; Non interacting particles and separation of variables; Reduction of the two particle problem to one-particle problem; The two particle rigid rotor; Hamiltonian operator and Schrödinger equation of a rigid rotor; Solution of

Hamiltonian and the Born-Oppenheimer approximation; Electronic and nuclear Schrödinger equations.

2. Principle of Perturbation theory; Perturbation theory consists of a set successive corrections to an unperturbed problem; examples are: helium atom, anharmonic oscillator and the particle in a one-dimensional box with a slanted bottom.

3. Variation method; Variational principle giving examples of the ground state of the hydrogen atom; ground state of a harmonic oscillator; Construction of trial wave functions; The LCAO basis set approach and the secular equation.

4. The basic principle of the ab initio method; The Hatree-Fock SCF method; The HF equation and the meaning of the HF equation; Antisymmetric of electronic wave functions; Slater determinants; Calculating the atomic and molecular energy; Minimizing the energy; Basis function and Roothaan-Hall equation.

5. Introduction of basis sets; Different types of basis set and their uses; Choice of basis sets; Basis set superposition error (BSSE); Slater and Gaussian type orbitals.

6. Introduction of electron correlation; Moller-Plesset perturbation approach to electron correlation; Configuration interaction (CI) approach to electron correlation; The coupled-cluster method; Applications of the ab initio method; Strength and weakness of the ab initio calculations.

7. The basic principles of density functional theory (DFT) and time-dependent density functional theory (TD-DFT); Hohenberg-Kohn theorem; Kohn-Sham SCF methodology; Exchange correlation function; Advantages and disadvantages of DFT compared to MO theory; General performance and overview of DFT.

Cost and efficiency.

2. Concept of potential energy surface (PES); Stationary point and saddle point; Geometry optimization and normal mode vibrations.

3. Basic principle of Molecular mechanics (MM) and force field; Developing a force field; Parameterizing force field; Calculation using force field; Differences in force field; Validation of force field; Advantages and limitation of force field methods.

4. Introduction of Huckel theory; Simple Huckel method; Applications of simple Huckel method; Strength and weakness of simple Huckel method.

5. Basic principles of SCF semi-empirical method; PPP, CNDO, INDO, NDDO; Applications of semiempirical methods; Strength and weakness of semi-empirical methods.

6. Frontier molecular orbital theory (FMOT); Concept from DFT; Qualitative MOT; Woodward-Hoffman rules.

7. Simulation techniques: Monte Carlo (MC) simulations; MC integration and Markov chains; The Metropolis method; Biased MC.

8. Molecular Dynamics: Classical mechanics; Equations of motion; Finite difference methods; Verlet algorithm; Velocity verlet; The time step: practical issues and multiple time-step algorithms; Constraint Dynamics; fundamental concepts: SHAKE and RATTLE; Maxwell-Boltzmann distribution of velocities; Temperature control; velocity scaling; Andersen's method; Nose-Hoover dynamics; Calculating properties from MD trajectories.
groups of molecules; multiplication of symmetry operations; rules for multiplications; point groups and molecular systems groups of very high and low symmetry; use of flow chart to identify a point group; optical activity and dipole moments on the basis of point group symmetry; symmetry operations and matrix representations; reducible and irreducible representations.

2. Interaction of Electromagnetic Radiation with Atoms and Molecules: Electromagnetic radiation; quantization of energy; absorption and emission of radiation; regions of spectrum; representation of spectra; signal-to-noise ratio; resolving power; width and intensity of spectral transitions.

3. Infrared (IR) spectroscopy: Solution of the Schrödinger equation for harmonic oscillator accounts for the IR spectrum for diatomic molecule; Overtones are observed in vibrational spectra; The infrared absorption process; The modes of stretching and bending; Bond properties and absorption trends; Dispersive and Fourier Transform spectrometers; Preparation of samples for infrared spectroscopy; Analysis of a spectrum; IR spectrum of compounds.

4. Nuclear Magnetic Resonance Spectroscopy (1H NMR): Nuclear spin states; Nuclear magnetic moments; Absorption of energy; The mechanism of absorption (resonance); Population densities of nuclear spin states; The chemical shift and shielding; The nuclear magnetic resonance spectrometer; The continuous-wave (CW) instrument and the Pulsed Fourier Transform (FT) instrument; Chemical equivalence, integrals and integration; Chemical environment and chemical shift; Local diamagnetic shielding, magnetic anisotropy, spin-spin splitting (n+1) rule, Pascal's triangle, the coupling constant and survey of 1H NMR absorption by various types of compounds.

5. Nuclear Magnetic Resonance Spectroscopy (13C NMR): The carbon-13 nucleus; carbon-13 chemical shifts; calculation of 13C chemical shifts; proton-coupled 13C spectra; spin-spin splitting of carbon-13 signals; proton-decoupled 13C spectra; Nuclear Overhauser Enhancement (NOE); cross-polarization: origin of the Nuclear Overhauser Effect; Analysis of some spectra.

distributions; Stirling's approximation; binomial distribution; Lagrange multipliers; relation between partial derivatives.

2. The Boltzmann distribution; molecular partition function for an ideal gas; interpretation/physical meaning of partition function; calculation of thermodynamic properties of ideal gas using molecular partition function; translational, vibrational, rotational and electronic contributions to the thermodynamic properties of ideal gases.

3. Canonical ensemble: Distribution function; evaluation of Lagrange multipliers using second law; expressions for thermodynamic functions in terms of canonical partition function; third law and entropy; remark on microcanonical ensemble.

4. Grand canonical ensemble: Distribution function; evaluation of Lagrange multipliers; expressions for thermodynamic functions in terms of grand canonical partition function; isothermal-isobaric ensemble.

5. Various statistics: Indistinguishability of particles and Fermi-Dirac; Einstein-Bose and Boltzmann distribution functions for noninteracting particles obtained via grand canonical partition function; thermodynamic properties.

6. Noninteracting molecules: Relation of canonical partition function to molecular partition function and thermodynamic properties; monatomic, diatomic and polyatomic gases; symmetry of wave functions; ortho-para hydrogen; chemical equilibria; phase equilibria; Independent modes or particles; Fermi-Dirac system (electron gas); Einstein crystal; Debye crystal; specific heat; free electron model of metal; photon gas (black body radiation); phase space.

7. Interacting particles: Lattice statistics; Ising model for spin systems; partition function for one-

Nucleic acids.

2. Drug discovery and drug design; Definition of drugs; Sources of drug; Modern drug design; Requirements for compounds to be drug; Stages and cost of modern drug design; Tools and teams in modern drug design; The role of computational chemistry in drug design; Drug discover-filtering out failures.

3. SAR and 2D-Quantitative Structure-Activity Relationships (2D-QSAR); Definition and QSAR methodology; Basic concepts of QSAR; Hansch analysis; Free-Wilson analysis; Molecular descriptors; Electronic parameters; Polar interactions; Steric, Biological and Topological parameters; Quantum-chemical descriptors; 2D-QSAR in drug design; Enzyme inhibition; Model system for cysteine protease; Prediction of mutagenic potencies; QSAR for antimalarial compounds; β1- and β2- antagonist activities; Activity-activity relationships and Validation of QSAR models.

4. Computer Assisted Drug Design (CADD); Description of CADD; Explanation of some basic terms: Pharmacophore, Lock-Key principle and Induced fit theory; Molecular Recognition; Requirements of a compound to be bioactive; The objects of CADD and Molecular Modeling; Driving forces of Receptor-Drug interactions; Solvent modeling - the role of water; The dynamic aspect of modeling; Techniques and concepts used in CADD and Molecular Modeling.

5. Introduction of molecular docking; Search algorithms; Scoring; Validation of results and the docking process.

6. Homology model building; Steps for building a homology model and reliability of results.

7. Challenges in molecular modelling; Free energy, Solvation and Reactions.

ethane and other small molecules, Heteroatom hyperconjugation (Anomeric Effect) in acyclic molecules, Representation of electron density by the Laplacian Function, Application of density functional theory (DFT) to chemical properties and reactivity, DFT Formulation of chemical potential, Electronegativity, Hardness and Softness, Covalent and van der Waal Radii, Formulation of reactivity—The Fukui Function, Concepts of substituent groups effects.

2. Stereochemistry, Conformation, and Stereoselectivity: Stereoselective and Stereospecific Reactions. Enantioselective Reactions.

3. Structural Effects on Stability and Reactivity: Thermodynamic stability, Relationship between structure and thermodynamic stability for hydrocarbons, Calculation of enthalpy of formation and enthalpy of reaction, Representation of potential energy changes in reactions, Reaction rate expressions, General relationships between thermodynamic stability and reaction rates, Kinetic versus thermodynamic control of product composition, Correlations between thermodynamic and kinetic aspects of reactions, Curtin-Hammett Principle, Kinetic isotope effects, Linear Free-Energy Relationships for substituent effects, Acidity of hydrocarbons.

4. Nucleophilic Substitution: SN1 Mechanism, SN2 mechanism, Relationship between stereochemistry and mechanism of substitution, Structural and solvation effects on reactivity, Characteristics of nucleophilicity, Effect of solvation on nucleophilicity, Leaving-group effects, Steric and strain effects on substitution and ionization rates, Effects of conjugation on reactivity, Neighboring-group participation.

5. Polar Addition and Elimination Reactions: Addition of hydrogen halides to alkenes, Acidcatalyzed hydration and related addition reactions, Addition of halogens, Electrophilic additions involving metal ions, Additions to alkynes and allenes, Hydrohalogenation and hydration of alkynes, Elimination reactions, The E2, E1 and E1cb mechanisms, Stereochemistry of E2 2. Analysis and Management of Biochemical Data: Statistical analysis of biochemical data, Biochemical data analysis with spreadsheet application, Biochemical data management with database program.

3. Visualization of Biomolecules: Representation of molecular structures, Drawing and display of molecular structures.

4. Structure and Analysis of Biochemical Compounds: Survey of biomolecules, Characterization of biomolecular structures, Fitting and search of biomolecular data and information.

5. Biomolecular Interactions: Biomacromolecule – ligand interaction, Receptor biochemistry and signal transduction, Fitting of binding data and search for receptor databases.

6. Enzyme Kinetics: Characterization of enzymes, Kinetics of enzymatic reactions, Search and analysis of enzyme data.

7. Metabolic Simulation: Introduction to metabolism, Metabolic control analysis, Metabolic databases and simulation.

8. Nucleotide Sequences and Recombinant DNA: Genome, DNA sequence and transmission of genetic information, Recombinant DNA technology, Nucleotide sequence analysis.

9. Protein Sequence Analysis: Information and features of protein sequence, Database search and sequence alignment.

10. Prediction of Protein Structures: Prediction of protein secondary structures from sequences,

disorder, Comparison with solution properties.

2. Stereoselectivities: Conformational analysis, Enantioselectivities, Racemate separation, Stereoselective synthesis, Structure evaluation, Mechanistic information.

3. Metal Ion Selectivity: Chelate ring size, Macrocycle hole size, Preorganization.

4. Spectroscopy of Inorganic Compounds: Vibrational spectroscopy, Electronic spectroscopy, EPR spectroscopy, NMR spectroscopy.

5. Electronic Effects: d-orbital directionality, The trans influence, Jahn-Teller distortions.

6. Bioinorganic Chemistry: Complexes of amino acids and peptides, Metalloproteins, Metalloporphyrins, Metal-Nucleotide and Metal-DNA interactions, Other systems.

7. Organometallics: Metallocenes, Transition metal-allyl systems, Transition metal phosphine compounds, Metal-metal bonding, Carbonyl cluster compounds.

8. Compounds with s-. p- and f-block elements: Alkali and alkaline earth metals, Crown ethers, Cryptands, Spherands, Biologically relevant ligands, Main group elements, Lanthanoids and Actinoids.

Text Book

1. Molecular Modeling of Inorganic Compounds, Peter Comba, Trevor W. Hambley.

computational approaches, Li–ion batteries, Cell voltages and structural phase stability, Li–ion diffusion and defect properties, Surfaces and horphology, Layered cathode materials for Li- ion and Mg-ion batteries. (ii) Hydrogen: Introduction, Computational approach in hydrogen storage research, Chemisorption approach, Physisorption approach, Spillover approach, Kubas-Type approach.

2. Energy Conversion in Solid Oxide Fuel Cells: Introduction, Computational details, Cathode materials and reactions, Surfaces: LaMnO3 and (La,Sr)MnO3 Perovskites, Surface termination, Surface point defects, Oxygen adsorption and diffusion, Rate-determining step of the surface reaction, Bulk properties of multicomponent perovskites, Oxygen vacancy formation and migrarion in (Ba,Sr)(Co,Fe)O3– δ , Disorder and cation rearrangement in (Ba,Sr)(Co,Fe)O3– δ , Defects in (La,Sr)(Co,Fe)O3– δ , Ion transport in electrolytes, Reactions at SOFC anodes.

3. Heterogeneous Catalysis for Energy Conversion: Introduction, Particle size dependence of catalytic reactivity, Activity and selectivity as a function of the metal type, Reactivity as a function of state of the surface, Mechanism of acid catalysis: Single site versus dual site, Basic concepts of heterogeneous catalysis, Surface sensitivity in CH activation, Homolytic activation of CH Bonds, Heterolytic activation of CH bonds, Brønsted acid catalysis, Lewis acid catalysis, Surface sensitivity for the C–C bond formation, Transition metal catalyzed FT reaction, C–C bond formation catalyzed by zeolitic Brønsted acids, Structure and surface composition sensitivity: Oxygen insertion versus CH bond cleavage, Silver-catalyzed ethylene epoxidation, Benzene oxidation by iron-modified zeolite.

4. Solar Energy materials: Introduction, Thin-film photovoltaics, First-Principles methods for electronic excitations, Hedin's equations and the GW approximation, Hybrid functionals, Bethe–Salpeter Equation, Model Kernels for TDDFT, Examples of Applications, Cu-Based Thin-Film absorbers, Delafossite transparent conductive oxides.

searching using 2D structural fingerprints. Predicting the performance of fingerprint similarity searching. Bayesian methods in virtual screening and chemical biology. Reduced graphs and their applications in chemoinformatics. Fragment descriptors in structure-property modeling and virtual screening. Pharmacore based virtual screening. Virtual ligand screening against comparative protein structure models. AMMOS software: method and application. Chemoinformatics processing of enzymatic transformations. The interweaving of chemoinformatics and HTS. Computational systems chemical biology.

2. Drug binding site prediction: A molecular dynamics ensemble-based approach for the mapping of druggable binding sites, Analysis of protein binding sites by computational solvent mapping.

3. Prediction of protein-Protein Docking and Interactions: AGGRESCAN: method, application and perspectives for chemical biology. ATTRACT and PTOOLS: open source programs for protein-protein docking.

4. Entropy, Solvent and Protonation: Estimation of conformational entropy in protein-ligand interactions: A computational perspective. Explicit treatment of water molecules in data-driven protein-protein docking: The solvated HADDOCKing approach. Protein-water interactions in MD simulations. Assignment of protonation states in proteins and ligands: combining pKa prediction with hydrogen bonding network optimization.

5. Toward the use of Robust Free Energy Methods in Chemical Biology: Best practices in free energy calculations. A practical guide to protein-drug binding free energy calculations. Free energy calculations from one step perturbations.

Text Books

Introduction to Organic molecules, Functional groups and their structures Lab on Molecular modeling and visualization with Gauss View 6.0 Lab on QM calculations with Gaussian.

Experiment 2 Getting started with calculations: Setting up and running calculation, energy calculation, interpreting energies and energy difference, dipole, higher dipole moments, molecular orbitals and modeling open shell systems.

Experiment 3 Structure and Analysis of organic Compounds: Survey of organic molecules, potential energy surface (PES) and single point energy calculation.

Experiment 4 Geometry Optimizations: geometry optimization of some organic molecules, Locating minima and maxima, convergence criteria, transition state calculations.

Experiment 5 Frequency Calculation: predict the infrared and Raman spectra of molecules (frequency and intensities calculation), characterizing stationary points, and compute zero point vibration and thermal energy correction.

Experiment 6 Basis set effects: Introduction different types of basis sets. Geometry optimization of some organic molecules with different basis sets and compares energies and find out the basis set effects of the molecules.

Experiment 7 Ion-ion interactions, Ion-dipole interactions, dipole-dipole interactions, ion-induced dipole interactions, hydrogen bonding, metal-ligand interactions, NMR calculation.

Experiment 8 Selecting an appropriate Theoretical method: Optimized geometry of some organic molecules with different methods, compare energy. Calculate HOMO-LUMO energies,

functional groups and their structures, Molecular modeling and visualization with Gauss View 6.0, QM calculations with Gaussian 16.

Experiment 2 Minimizing Molecular Structures: geometry optimization of some organic, convergence criteria, examining optimization results, locating transition structures, characterizing stationary points, interpreting normal mode information, strategies for handling difficult optimization cases.

Experiment 3 Modeling Large Systems (Gaussian ONIOM facility): Modeling QM: MM calculations of large molecule, ONIOM calculations of different transition metal complexes.

Experiment 4 Modeling Thermochemistry: Compound model chemistries for high accuracy energies, conformational searching and Boltzmann averaging, computing vibrational properties, compute zero point vibration and thermal energy correction.

Experiment 5 Methods and Basis set effects: Introduction different types of basis sets and methods, geometry optimization of some organic molecules with different basis sets, compares energies and find out the suitable method and basis sets.

Experiment 6 Predicting Chemical Properties: Modeling thermochemistry, predicting spectra of NMR, conformational searching, computing vibrational properties, IR and Raman Spectra.

Experiment 7 Modeling Chemistry in Solution: Continuum models of salvation, Properties in solution, predicting free energy in solution, predicting thermodynamic quantities.

Experiment 8 Predicting Free Energy Calculation: Free energy of solvation, solvation model based on SMD, including implicit and exclusive solvent model systems.

Programming in FORTRAN: Data Types, Constants, and Variables, Operation and Intrinsic Functions, Expressions and Assignment Statements, Numeric, Relational and Logical operations, Operator Precedence, single and mixed mode arithmetic, Fortran I/O and External Files.

Control Constructs: IF Constructs, Nested and Named IF Constructs, SELECT CASE Construct, Do Loops, Named and Nested Loops, Implied do loops.

Arrays and Programming Units: Declarations, Array Constructors, Array Sections, Array operations, Main Program, External Procedures, Internal Procedures, Subroutines, Functions.

Computing using FORTRAN: Construction and implementation of FORTRAN programs for solving problems in computational chemistry. Books Recommended

1. Stephen J. Chapman, Introduction to FORTRAN 90/95.

2. Michael Metcalf, John Reid, Malcolm Cohen, Modern Fortran explained, Oxford University Press.

3. Gordon B. Davis & Thomas R. Hoffmann, FORTRAN 77: A Structured, Disciplined Style.

